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Cell growth and differentiation in mammalian tissues Whereas Drosophila ELAV recently has been impli-
cated in alternative splicing (Koushika et al. 1996), neu-are regulated by tight control of gene expression at the

transcriptional, posttranscriptional, and translational ronal ELAV proteins from vertebrates may also act in
the cytoplasm to modulate either the translation of spe-levels. Although transcription is the primary level of

regulation of gene expression, it has become clear that cific mRNAs or their rate of turnover (Levine et al. 1993;
Gao and Keene 1996; Jain et al. 1997; Myer et al. 1997).several levels of posttranscriptional RNA processing

play important roles in regulating the final outcome of Unstable mRNA species encode a variety of proteins that
regulate cell growth and differentiation. The synthesis ofprotein production. Processing of eukaryotic pre-

mRNA, including polyadenylation, capping, and splic- c-fos mRNA, for instance, represents an early step in
the activation of the cell cycle in previously quiescenting, as well as transport of RNAs, affect the availability

of mature mRNA for translation. In addition, the local- cells, and the duration of this step is limited by rapid
degradation of c-fos mRNA (Schiavi et al. 1992, andization, stability, and translatability of cytoplasmic

mRNAs affect both quantitative and qualitative aspects references therein). A signal that confers rapid turnover
of this and many other mRNA species includes the pen-of final gene expression.

Although many genes have been shown to influence tanucleotide, AUUUA, often present in multiple copies
in the 3� UTRs of unstable mRNAs (for review see Chenorganismal development through transcriptional regula-

tion, relatively few have been implicated in regulation of and Shyu 1995, and references therein). In some cases,
this sequence is sufficient to make a normally long-livedcell growth or differentiation at posttranscriptional levels.

As might be expected, RNA-protein interactions play key mRNA, such as the b-globin mRNA, unstable (Shaw
and Kamen 1986). The intrinsic instability of mRNAsregulatory roles in postranscriptional gene expression. One

gene whose product acts at the level of RNA processing encoding proteins that induce cell proliferation or differ-
entiation represents an important regulatory mechanismwas discovered in a genetic screen of the fruit fly Drosoph-

ila melanogaster. This gene, named elav (pronounced ella- and allows for precise temporal control of the expression
of such proteins as c-fos, c-myc, the Id transcriptionalvee) for the embryonic lethal abnormal visual phenotype,

is essential for the development and maintenance of the regulator, or the glucose transporter, GLUT1. As de-
scribed below, the ELAV proteins bind specifically tonervous system (Campos et al. 1985; Robinow and White

1988). ELAV protein and its vertebrate homologues repre- AU-rich sequence elements located in 3� UTRs, raising
the possibility that these proteins can alter the fate ofsent a subfamily of the RRM (RNA recognition motif)

superfamily of RNA-binding proteins (reviewed in Kenan bound mRNAs. Indeed, a widely expressed 32-kD pro-
tein implicated in mRNA stability and known to bindet al. 1991; Burd and Dreyfuss 1994). Genetic findings in

the fly have been extended to the study of human ELAV to AU-rich sequences in 3� UTRs of c-myc and c-fos
mRNAs (Vakalopoulou et al. 1991) was recently shownproteins by application of molecular, biochemical, and

combinatorial selection methods. Together, these ap- to be an ELAV protein (Myer et al. 1997).
proaches link ELAV proteins to posttranscriptional regula-
tion of gene expression during growth and differentiation ELAV Genes in Vertebrates and Invertebrates
of many cell types.

Cloning of the Drosophila elav gene (Robinow et al.
1988), as well as other vertebrate ELAV homologues,Received May 9, 1997; accepted for publication June 4, 1997.
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Table 1

elav-Like Genes in Vertebrates and Invertebrates

Name Homologue Species Tissue Distribution Developmental Expression Reference

ELAVL1a elrA Xenopus Ubiquitous All stages Good (1995)
HuR Human Ma et al. (1996)
mHuA Mouse Okano and Darnell (1997)
MelG Mouse Author’s unpublished data

ELAVL2a elrB Xenopus Brain, testes, ovaries Up to gastrulation and in tadpole Good (1995)
Xel-1 Xenopus Perron et al. (1995)
Hel-N1 Human Levine et al. (1993)
mHuB Mouse Okano and Darnell (1997)
MeI-N1 Mouse Abe et al. (1996b )
Rel-N1 Rat King et al. (1994)

ELAVL3a elrC Xenopus Nervous system Late gastrula Good (1995)
HuC Human Szabo et al. (1991)
PLE21 Human Sakai et al. (1994)
mHuC Mouse Abe et al. (1996a)

ELAVL4a elrD Xenopus Nervous system Late neurula Good (1995)
HuD Human Szabo et al. (1991)
mHuD Mouse Okano and Darnell (1997)

elav Drosophila CNS and peripheral Birth of neurons (all stages) Robinow et al. (1988)
nervous system

rbp9 Drosophila CNS Late 3d-instar larva Kim and Baker (1993)
Cel-1 Caenorhabditis elegans Nervous system Larval and adult stages Author’s unpublished data

a Name endorsed by HUGO GDB Nomenclature.

1994). ELAV proteins also contain auxiliary regions— is expressed in various cultured cell lines including neu-
ronal precursors but not in mature neurons (Gao andthe N-terminus and the hinge region located between

the second and the third RRM (Szabo et al. 1991; Levine Keene 1996; authors’ unpublished data). Since alterna-
tively spliced hinge segments of the ELAV proteins areet al. 1993; King et al. 1994), which presumably mediate

interactions with other cell components (Gao and Keene presumed to be protein-protein interaction sites, it is
possible that all of the mammalian isoforms of ELAV1996). The discovery of the neural-specific ELAV pro-

tein in Drosophila, as well as identification of its func- proteins interact with the same set of RNA species but
with different sets of cellular proteins. These interactionstional importance for the development and maintenance

of the nervous system, was followed by an extensive might convey ELAV messenger ribonucleoprotein
(mRNP) complexes into different functional contexts.search for elav-like RRM-containing genes that might

participate in differentiation processes. Numerous clon- The existence of four highly conserved elav-like genes
and their multiple expressed isoforms in vertebrates ising attempts led to the discovery of four different elav-

like genes in vertebrates, another elav homologue in intriguing and, most likely, functionally important.
However, spontaneous mutations in vertebrate elav-likeDrosophila, and one in Caenorhabditis elegans (table

1). Each of the four vertebrate elav-like genes shows genes have not been identified, and none has been gener-
ated experimentally. It will be interesting to learn bothtissue specificity and a unique pattern of developmental

mRNA expression, as has been demonstrated in Xeno- whether these genes are essential and to what extent the
different genes and their isoforms overlap in function.pus and zebrafish (Good 1995; table 1).

Analysis of the three human neuronal elav-like
genes—Hel-N1 (elrB), HuC (elrC), and HuD (elrD)— RNA Targeting of ELAV Proteins
demonstrated that their pre-mRNAs can be processed
by alternative splicing (see review by Cooper [1997], Although developmental and genetic studies suggest

the importance of ELAV genes in the differentiation andin this issue of the Journal), resulting in both further
diversification of the gene products and altered tissue- maintenance of the nervous system, a major insight into

their function was revealed by study of their sequence-specificity (Gao et al. 1994; King 1994; Sekido et al.
1994; Liu et al. 1995; Abe et al. 1996a; King and Drop- specific binding, by use of RNA-combinatorial selection

methods (see accompanying sidebar). In these experi-cho 1996; Steller et al. 1996); for instance, the alterna-
tively spliced form of Hel-N1, called ‘‘Hel-N2’’ (Gao et ments, purified recombinant Hel-N1 and Hel-N2 pro-

teins were used to select RNA molecules in vitro fromal. 1994), is most similar to HuR (Ma et al. 1996) and
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a heterogenous pool of synthetic RNA species (Levine
et al. 1993; Gao et al. 1994; Keene 1996; Andrews and

Evolution in the test tubeKeene, in press). In vitro–selected RNAs were amplified
and subjected to several iterative rounds of reselection Crucial insights into the function of RNA-binding pro-
and reamplification until a clear ‘‘RNA recognition con- teins came from the use of in vitro selection methods.
sensus sequence’’ was obtained (Tsai et al. 1991). Se- Starting with a protein of interest, such as ELAV, and
lected RNA molecules were purified, amplified by re- a vast number of combinations of synthetic RNA mole-
verse transcription and PCR, cloned, and sequenced as cules, constituting a combinatorial ‘‘shape library,’’ one

can carry out in the test tube a process much like naturaldescribed elsewhere (reviewed in Conrad et al. 1996,
selection. RNA ligands whose structures fit the proteinand accompanying articles). This approach revealed that
target molecule are selected through iterative cycles ofboth Hel-N1 and Hel-N2 proteins bind to RNA se-
binding and amplification; the result is the evolution ofquences containing short stretches of uridylate residues
the most ‘‘fit,’’ high-affinity target binders (Joyce 1992;interspersed with other nucleotides (Levine et al. 1993;
Fitzwater and Polisky 1996). RNA ‘‘shape libraries’’Gao et al. 1994). These sequences resembled the AU- have been prepared with either a randomized sequence

rich sequences observed in the 3� UTRs of c-myc, c- set or naturally occurring nucleic acids, as described by
fos, and GM-CSF mRNAs, elsewhere shown to mediate Gao et al. (1994). Selected molecules of this kind, called
mRNA degradation (Shaw and Kamen 1986). In subse- ‘‘aptamers’’ because they are ‘‘apt’’ to bind to the target,
quent studies, sequences selected by recombinant Hel- can also be derived by starting from combinatorial li-
N1 from a pool of natural mRNAs derived from a brain braries consisting of DNA, peptides, or small organic

compounds (reviewed in Gordon 1994; Janda 1994;polyA/ library also contained short stretches of uridy-
Kenan et al. 1994).lates flanked by A, G, or C, which was consistent with

the randomized RNA-selection experiments (Levine et
al. 1993; Gao et al. 1994). The majority of these mRNAs
identified in the cDNA databases encoded proteins with
known roles in the regulation of cell growth. These com-
binatorial selection results prompted a series of in vitro
binding experiments, which demonstrated unequivo-
cally that Hel-N1 has high specificity for the 3� UTRs
of mRNAs containing these AU-rich elements (Levine
et al. 1993; King et al. 1994). Similar experiments, per-
formed with HuD, HuC, and HuR (Liu et al. 1995; Abe
et al. 1996a; Chagnovich et al. 1996; Chung et al. 1996;
Ma et al. 1996; Chung et al. 1997; Myer et al. 1997),
demonstrated that all ELAV-like proteins share similar
RNA-binding specificity. Biochemical experiments fur-
ther support a role for mammalian neuronal ELAV pro-
teins in the regulation of cytoplasmic mRNA metabo-
lism. These proteins bind to a subset of poly(A)/ mRNA
in vivo, forming the mRNP complexes that associate
with ribosomes during translation (Gao and Keene

Using various combinatorial libraries, one can select1996; authors’ unpublished data). To date, ELAV pro-
aptamers that will specifically inhibit metabolic path-teins represent the only example of RNA-binding pro-
ways in cells or pathogens. This combinatorial approachteins of unknown specificity for which combinatorial
has been termed ‘‘pharmacological genetics,’’ because itlibraries have been used to elucidate their cellular RNA
allows one to probe gene structure and function by usingtargets; but more are expected to emerge.
aptamers to interfere with the function of a gene prod-
uct, even one that has never been characterized. In both

Cellular Dynamics of Mammalian ELAV Proteins academic and commercial laboratories, combinatorial
chemistry has begun to yield novel compounds, some

In Drosophila, the ELAV protein is apparently ex- with therapeutic promise. Large-scale plans are being
pressed only in nuclei (Robinow and White 1991; Kim developed to apply high-throughput screening of combi-
and Baker 1993), consistent with a role in posttranscrip- natorial libraries to derive inhibitors of gene products

of unknown function as they appear in the genome data-tional nuclear events such as splicing and, possibly, RNA
bases (Kenan et al. 1994; Lander 1996).stability. Recent findings have implicated Drosophila

ELAV in the generation of an alternatively spliced, ner-
vous system–specific isoform of neuroglian protein
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(Koushika et al. 1996). However, ELAV proteins of ver- insulin-dependent glucose transporter (GLUT1) mRNA
(Jain et al. 1997). Hel-N1 was found to bind to an AU-tebrates demonstrate both nuclear and cytoplasmic dis-

tribution (Barami et al. 1995; Gao and Keene 1996; rich element present in the 3� UTR of GLUT 1 mRNA
and to recruit GLUT1 mRNA into active polysomesauthors’ unpublished data), consistent with their

involvement in posttranscriptional regulation of gene (Jain et al. 1997).
Hel-N1, like the Drosophila ELAV protein, appearsexpression, including RNA stability or translatability

(Jain et al. 1997; Myer et al. 1997). The cytoplasmic to influence neuronal differentiation when ectopically
expressed in cultured cells. For example, human em-staining detected both in the cell body and in dendrites

of cortical neurons and medulloblastoma tumor cells bryonal teratocarcinoma (hNT2) cells differentiate into
neurons in response to retinoic acid treatment, but,shows discrete granular RNP distribution (Gao and

Keene 1996; authors’ unpublished data). ELAV-con- when these cells are transfected with Hel-N1 cDNA, the
differentiated phenotype is enhanced, as measured bytaining mRNPs localize along microtubule tracks both

in cell bodies and in the processes of cortical neurons. an increased number of terminally differentiated cells
(authors’ unpublished data). Although Hel-N1 was in-This association with the cytoskeleton was found to be

essential for the association of ELAV mRNP complexes sufficient by itself, in the absence of retinoic acid treat-
ment, to induce terminal differentiation, it was foundwith ribosomes (authors’ unpublished data), consistent

with findings that mRNA transport, localization, and to bind to the 3� UTR of a differentiation-specific neuro-
filament M (NF-M) mRNA and to increase its translat-translation involve interactions with the cytoskeleton

(for review, see St. Johnston 1995, and references ability. Therefore, it is possible that binding of Hel-N1
to differentiation-specific mRNAs increases their expres-therein). It is possible that association of mRNAs with

ELAV proteins, as mediated through 3� UTR binding, sion, thereby affecting cellular programs that induce ter-
minal differentiation.not only influences mRNA localization and translation

but also affects their stability. The precise mechanisms
that underlie these processes remain unknown, and it is Neuronal ELAV Proteins and Human Disease
unclear whether one of these processes is primary and
whether it might account for the others. The well-docu- Human neuronal ELAV proteins are expressed in tu-

mors consisting of cells with neuroendocrine featuresmented examples addressing stability of histone mRNAs
(Sive et al. 1984; Graves et al. 1987), b-tubulin mRNA such as small-cell lung cancer (SCLC). Interestingly,

some patients with SCLC appear to develop an autoim-(Pachter et al. 1987), c-myc mRNA (Linial et al. 1985),
or c-fos mRNA (Schiavi et al. 1994) suggest that these mune response against neuronal antigens, including

neuronal ELAV proteins (HuD, HuC, and Hel-N1).mRNAs are degraded cotranslationally. Whatever the
cause, it has become evident that the stability of many Anti-Hu antibodies and Hu-reactive B-cell lympho-

cytes (Dalmau et al. 1990; Szabo et al. 1991) penetratemRNAs and their active translation are coupled (for
review, see Jacobson and Peltz 1996, and references the blood-brain barrier of these patients and lead to

both the destruction of neural tissue and the develop-therein). Therefore, ribosomes have been proposed to
be one of the trans-acting factors that influence mRNA ment of neurological autoimmune disorders mani-

fested by dementia, cerebellar degeneration, brain-half-life, most likely in concert with other proteins.
However, few other trans-acting factors that affect stem encephalitis, or myelitis (Dalmau et al. 1990; for

review, see Darnell 1996). Therefore, the consequentmRNA stability have been identified or functionally
characterized. The presence of ELAV proteins in mRNA brain dysfunction is considered to be a ‘‘remote effect

of cancer’’ (reviewed in Anderson et al. 1987) and isparticles that associate with ribosomes and that are lo-
calized along microtubules suggests that these RNA- presumed to result from an immune response against

the ectopically expressed neuronal antigens present onbinding proteins influence and possibly couple the pro-
cesses of mRNA localization, translation, and stability. a tumor that is outside the immune-privileged CNS.

The pathology of the paraneoplastic diseases suggests
an important role of neuronal ELAV-like proteins inEffects of elrB/Hel-N1 on Gene Expression and Cell
homeostatic functioning of the human nervous system.Differentiation
Findings that these proteins have high affinity for AU-
rich sequences found in 3� UTRs of many growth-regula-Direct effects of vertebrate neuronal ELAV proteins

on mRNA metabolism have been demonstrated by use tory mRNAs, their association with polysomes together
with the granular mRNP distribution, and localizationof cell-culture transfection assays. Ectopic expression of

Hel-N1 protein in 3T3 L1 cells, which can be chemically along neuronal processes suggest that ELAV proteins
regulate localized mRNA expression. This type of regu-induced to differentiate into adipocytes, showed an en-

hanced-differentiation phenotype, in parallel with a dra- lation of protein production may be especially important
in neuronal cells where rapid and specific responses tomatic increase in the stability and translatability of the
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